
   

   

  

Procedural Fluency in Mathematics 
A Position of the National Council of Teachers of Mathematics 

 

Question 

What is procedural fluency, and how do we help students develop it?  

 

NCTM Position  

Procedural fluency is a critical component of mathematical proficiency. Procedural 

fluency is the ability to apply procedures accurately, efficiently, and flexibly; to transfer 

procedures to different problems and contexts; to build or modify procedures from other 

procedures; and to recognize when one strategy or procedure is more appropriate to apply 

than another. To develop procedural fluency, students need experience in integrating 

concepts and procedures and building on familiar procedures as they create their own 

informal strategies and procedures. Students need opportunities to justify both informal 

strategies and commonly used procedures mathematically, to support and justify their 

choices of appropriate procedures, and to strengthen their understanding and skill through 

distributed practice.  

 

Procedural fluency is more than memorizing facts or procedures, and it is more than 

understanding and being able to use one procedure for a given situation. Procedural 

fluency builds on a foundation of conceptual understanding, strategic reasoning, and 

problem solving (NGA Center & CCSSO, 2010; NCTM, 2000, 2014). Research suggests 

that once students have memorized and practiced procedures that they do not understand, 

they have less motivation to understand their meaning or the reasoning behind them 

(Hiebert, 1999). Therefore, the development of students’ conceptual understanding of 

procedures should precede and coincide with instruction on procedures. Although 

conceptual knowledge is an essential foundation, procedural knowledge is important in 

its own right. All students need to have a deep and flexible knowledge of a variety of 

procedures, along with an ability to make critical judgments about which procedures or 

strategies are appropriate for use in particular situations (NRC, 2001, 2005, 2012; Star, 

2005).   

 

In computation, procedural fluency supports students’ analysis of their own and others’ 

calculation methods, such as written procedures and mental methods for the four 

arithmetic operations, as well as their own and others’ use of tools like calculators, 

computers, and manipulative materials (NRC, 2001). Procedural fluency extends 

students’ computational fluency and applies in all strands of mathematics. For example, 

in algebra, students develop general equation-solving procedures that apply to classes of 

problems and select efficient procedures to use in solving specific problems. In geometry, 

procedural fluency might be evident in students’ ability to apply and analyze a series of 

geometric transformations or in their ability to perform the steps in the measurement 

process accurately and efficiently.  

 

Procedural fluency builds from an initial exploration and discussion of number concepts 

to using informal reasoning strategies and the properties of operations to develop general 

methods for solving problems (NCTM, 2014). Effective teaching practices provide 

experiences that help students to connect procedures with the underlying concepts and 

provide students with opportunities to rehearse or practice strategies and to justify their 

procedures. Practice should be brief, engaging, purposeful, and distributed (Rohrer, 
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2009). Too much practice too soon can be ineffective or lead to math anxiety (Isaacs & 

Carroll, 1999). Analyzing students’ procedures often reveals insights and 

misunderstandings that help teachers in planning next steps in instruction. In the same 

way, worked examples can serve as a valuable instructional tool, permitting teachers to 

understand how students analyze why procedures work or don’t work and consider what 

procedure might be most appropriate in a given situation (Booth, Lange, Koedinger, & 

Newton, 2013).  
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Executive Summary
Focus in High School Mathematics: Reasoning and Sense Making

B uilding on three decades of advocacy for Standards-
based mathematics learning of the highest quality for 

all students, a new publication of the National Council of 
Teachers of Mathematics recommends that all high school 
mathematics programs focus on reasoning and sense mak-
ing. In recent years, a number of documents have provid-
ed detailed analyses of the topics that should be addressed 
in each course of high school mathematics (see, for ex-
ample, American Diploma Project [2004]; College Board 
[2006, 2007]; ACT [2007]; Achieve [2007a, 2007b]). 
NCTM’s Focus in High School Mathematics: Reasoning and 
Sense Making offers a different perspective, proposing cur-
ricular emphases and instructional approaches that make 
reasoning and sense making foundational to the content 
that is taught and learned in high school. 

A high school mathematics program 
based on reasoning and sense making 
will prepare students for citizenship, the 
workplace, and further study.

High school students face major challenges in their 
mathematics preparation. U.S. students lag in basic 
mathematical literacy—the knowledge and skills that pre-
pare them to apply mathematics in a variety of contexts, 
including their future lives as responsible citizens (see, for 
example, the Programme for International Student As-
sessment [2007]). They are not prepared to face the eco-
nomic and workforce challenges of an increasingly global, 
technological society. This inadequate preparation is con-
tributing to the decline of U.S. leadership in many techni-
cal fi elds (see Tapping America’s Potential [2008]). Focus 
in High School Mathematics: Reasoning and Sense Making ar-

gues that focusing on rea-
soning and sense making 
in the context of strong 
mathematical content will 
help high school students 
meet these challenges. 

Reasoning involves 
drawing conclusions on 
the basis of evidence or 
assumptions. Although 
reasoning is an impor-
tant part of all disciplines, 
it plays a special role in 

mathematics. In addition to formal reasoning or proof, 
reasoning in mathematics often begins with explorations, 
conjectures, or false starts. As students progress through 
the high school years, they should develop increasingly 
sophisticated standards for explanations. Sense making 
involves developing an understanding of a situation, con-
text, or concept by connecting it with existing knowledge. 
Reasoning and sense making are closely intertwined and 
interdependent. 

Reasoning and sense making are the foundations for 
the processes of mathematics—problem solving, reason-
ing and proof, connections, communication, and repre-
sentation (see NCTM [2000]). Moreover, reasoning and 
sense making help students develop connections between 
new learning and their existing knowledge, increasing 
their likelihood of understanding and retaining the new 
information. (As this volume uses the term reasoning, 
mathematical reasoning encompasses statistical 
reasoning.)

Reasoning and sense making should be 
a part of the mathematics classroom 
every day. 

Focus in High School Mathematics: Reasoning and Sense Mak-
ing describes “reasoning habits,” which are productive 
ways of thinking that should become customary in the 
processes of mathematical inquiry and sense making. In 
addition to “covering” mathematical topics, high school 
mathematics programs must give attention to developing 
these reasoning habits on a continuing basis—not as a set 
of new topics to be taught but as an integral part of the 
curriculum.  The publication offers a list of sample rea-
soning habits, which it emphasizes are not experienced in 
isolation or sequentially. To help their students progress 
to higher levels of reasoning, teachers must judiciously 
select tasks that require them to fi gure things out for 
themselves and ask probing questions. Both teachers and 
students should ask and answer such questions as “What’s 
going on here?” and “Why do you think that?”

Reasoning and sense making are inherent in develop-
ing the components of mathematical competence 
(Kilpatrick, Swafford, and Findell 2001). Conceptual un-
derstanding is interrelated with sense making as defi ned 
in this volume. Procedural fl uency includes not only 
knowing how to carry out procedures, but also 
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Focus in High School Mathematics highlights reasoning 
opportunities in fi ve specifi c content areas of the high 
school mathematics curriculum:

♦ Reasoning with Numbers and Measurements

♦ Reasoning with Algebraic Symbols

♦ Reasoning with Functions

♦ Reasoning with Geometry

♦ Reasoning with Statistics and Probability

Within each content area, the publication identifi es 
a number of key elements that provide a broad structure 
for considering possible ways of focusing on reasoning 
and sense making. These key elements are not intended 
to be an exhaustive list of specifi c topics to be addressed 
but rather a lens through which to view the potential of 
high school programs for promoting mathematical reason-
ing and sense making. A separate chapter on each content 
area focuses on how reasoning and sense making can be 
promoted within the key elements of that area. The chap-
ters also include a series of examples intended to provide 
idealized illustrations of how reasoning and sense making 
might develop.

The task of creating a curriculum that realizes the 
goals of this document will be challenging. Although such 
a curriculum must address important content, its creation 
requires much more than developing lists of topics to be 
taught in particular courses. Moreover, students must have 
experiences with reasoning and sense making within a 
broad curriculum that meets a wide range of their future 
needs, preparing them for future success as citizens and 
in the workplace, as well as for careers in mathematics and 
science. 

Mathematical reasoning and sense 
making must be evident in the 
mathematical experiences of all students.

Essential to realizing the vision for high school mathemat-
ics outlined in this publication is ensuring that all stu-
dents—no matter their mathematical background or the 
mathematics class in which they are enrolled—have full 
access to opportunities for reasoning and sense making in 
their mathematics classes. Focus in High School Mathemat-
ics: Reasoning and Sense Making provides high school teach-
ers, administrators, and staff with some considerations for 
ensuring that their schools are enacting equitable learn-
ing for all their students. In particular, Focus in High School 
Mathematics communicates the message that high schools 
can monitor equity by attending to phenomena that po-
tentially pose barriers to, or have a signifi cant impact on, 
the opportunities for engaging every student in the activi-
ties of reasoning and sense making. These phenomena 
include the following: 

understanding why they work, how they might be used, 
and how their results should be interpreted, all of which 
are grounded in reasoning and sense making. Other as-
pects of mathematical competence directly draw on rea-
soning and sense-making skills, including the ability to 
formulate, represent, and solve mathematical problems 
and the capacity for logical thought and explanation. Fi-
nally, students who view mathematics as a reasoning and 
sense-making enterprise may be more likely to develop a 
productive disposition toward mathematics.

Mathematics should help students understand and 
operate in the physical and social worlds. They should be 
able to connect mathematics with a real-world situation 
through the use of mathematical models. The connec-
tions between mathematics and real-world problems devel-
oped in mathematical modeling add value to, and provide 
incentive and context for, studying mathematical topics.

Technology is an integral part of the world in which 
students live, and high school mathematics classrooms 
must refl ect that reality. Technology can advance the goals 
of reasoning and sense making—facilitating students’ 
searches for patterns, reducing the load of burdensome 
calculations so that they can focus on thinking strategical-
ly, and providing them with multiple ways of representing 
a mathematical situation. However, the use of technology 
should not be allowed to overshadow the development of 
procedural profi ciency. Students who have opportunities 
to refl ect on how to use technological tools effectively will 
be less likely to use them as a crutch. 

Reasoning and sense making are integral 
to the experiences of all students across 
the high school mathematics curriculum.

Reasoning and sense making should be pervasive in all ar-
eas of the high school mathematics curriculum. Although 
formal reasoning is often emphasized in geometry, stu-
dents are less likely to experience reasoning in other areas 
of the curriculum, such as algebra. When reasoning and 
sense making are infused everywhere in the curriculum, 
they allow students to discover coherence across the do-
mains of mathematics and help them see how new con-
cepts connect with existing knowledge. Although “reason-
ing” should not be viewed as a set of new topics but rather 
a stance toward mathematics learning, a focus on reason-
ing and sense making will inevitably require instructional 
time. However, developing strong reasoning habits may 
yield compensating effi ciencies. Students who make rea-
soned connections with existing knowledge may be more 
likely to retain what they have learned in previous courses, 
thus reducing the need for reteaching. Furthermore, in-
struction that emphasizes underlying connections among 
ideas may provide coherence that allows for streamlining 
the curriculum and eliminating lists of particular skills 
that teachers must help students to master.
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This publication’s recommendations, in combina-
tion with the more detailed content recommendations 
in Principles and Standards for School Mathematics, provide a 
critical fi lter for examining any curriculum arrangement 
to ensure the achievement of the goals of high school 
mathematics. Although curriculum is undeniably crucial 
to reaching the goal set out in this publication, it cannot 
stand alone. Mathematical instruction and a classroom 
environment promoting and valuing students’ reasoning 
and sense making are essential as well. Teachers must se-
lect worthwhile tasks that engage students in reasoning 
and sense making.

As students move through mathematics from prekin-
dergarten through college, coherence in curriculum and 
instruction is crucial to their success. Too often, as stu-
dents progress, they fall victim to differing mathematical 
expectations. To achieve the goal of curricular coherence, 
an open dialogue is essential among prekindergarten 
through grade 8 teachers, secondary school mathematics 
teachers, mathematics teacher educators, and mathemat-
ics and statistics faculty in higher education, as well as oth-
ers in client disciplines, to ensure continuing support and 
development of students’ mathematical abilities. 

Schools, parents, policymakers, and others need 
to see evidence that the development of reasoning and 
sense-making abilities is a shared goal at all levels of math-
ematics teaching, including elementary school mathemat-
ics, high school mathematics, and the undergraduate cur-
riculum. The time is right to build strong partnerships 
and recognize the benefi ts of a mathematics curriculum 
that focuses on reasoning and sense making from prekin-
dergarten through grade 16.

Finally, realizing any goal for students’ learning in-
volves assessment. Schools are currently under tremen-
dous pressure to demonstrate success as measured by 
high-stakes tests. It is important to assess what we value. 
Assessments that support the goals of this publication will 
probe students’ development of mathematical reasoning 
and sense making and contribute to students’ progress 
in mathematics. This endeavor is essential for at least two 
reasons. First, we will not be able to determine whether we 
are meeting our goals if we do not measure our progress. 
Second, high-stakes testing that concentrates primarily 
on procedural skills without assessing reasoning and sense 
making sends a message that is contrary to the vision of 
Focus in High School Mathematics and can adversely infl u-
ence instruction and learning. Assessment that focuses 
primarily on students’ abilities to do algebraic manipula-
tions, apply geometric formulas, and perform basic statis-
tical computations will lead students to believe that rea-
soning and sense making are not important. 

Formative assessment—which involves providing stu-
dents with learning activities and, on the basis of feedback 
from those activities, adjusting teaching to meet the stu-
dents’ needs—is important in helping teachers ensure 

♦ Courses. It is very important that high schools 
look critically at their practices involving tracking 
or grouping of students by ability. The courses 
that students take have an impact on the oppor-
tunities that they have for reasoning and sense 
making. Students in all levels of mathematics—
from prealgebra to calculus and from low-track 
to Advanced Placement—must have mathemati-
cal experiences that offer rich opportunities to 
build reasoning habits as well as to make sense of 
what they are doing mathematically.

♦ Students’ demographics. Mathematics educators 
continue to be concerned about discrepancies 
in achievement among demographic groups on 
the basis of race, ethnicity, socioeconomic status, 
and other variables. Students from some groups 
receive fewer opportunities for reasoning and 
sense making than students in other groups. As 
a result, it is important that high schools do ev-
erything they can to promote success among all 
students—for example, encouraging enrollment 
by students from all demographic groups in ad-
vanced mathematics courses. Also, providing stu-
dents with opportunities to see that mathematics 
is important for their lives and future career is a 
must for high schools.

♦ Expectations, beliefs, and biases. The expecta-
tions, beliefs, and biases of others can signifi cant-
ly affect the mathematical opportunities provided 
for students. Building on Principles and Standards 
for School Mathematics (NCTM 2000), Focus in High 
School Mathematics: Reasoning and Sense Making 
emphasizes the need for teachers, administra-
tors, and school staff to hold high expectations 
for all students. Teachers’ beliefs about students’ 
mathematical capabilities can have serious im-
plications for the opportunities that students are 
afforded in high school mathematics. Teachers 
must believe that students will benefi t from and 
can engage in reasoning and sense making, and 
they must work to help students succeed in this 
endeavor.

Curriculum, instruction, and assessment 
form a coherent whole to support 
reasoning and sense making.

To achieve the vision of reasoning and sense making as the 
focus of high school students’ mathematical experience, all 
the components of the educational system—curriculum, 
instruction, and assessment—must work together and be 
designed to support students’ reasoning and sense making. 
A coherent and cohesive mathematics program requires 
strong alignment of these three elements.
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in meaningful ways to ensure that the story of missed op-
portunities to improve high school mathematics across the 
United States does not continue, to be told fi ve years from 
now, let alone in three decades. We simply cannot afford 
to wait any longer to address the large-scale changes that 
are needed. The success of our students and of our nation 
depends on it. 

References
ACT. ACT National Curriculum Survey, 2005–2006. Iowa City, 

Iowa: ACT, 2007.

Achieve. High School Model Three-Year Integrated Course Sequence. 
American Diploma Project, 2007a. http://www.
achieve.org/node/969.

———. High School Model Three-Year Traditional Plus Course 
Sequence. American Diploma Project, 2007b. http://
www.achieve.org/node/969.

American Diploma Project. Ready or Not: Creating a High School 
Diploma That Counts. Washington, D.C.: Achieve, 
2004.

College Board. College Board Standards for College Success: 
Mathematics and Statistics. New York: College Board, 
2006.

———. College Board Standards for College Success: Mathematics 
and Statistics: Adapted for an Integrated Curricula. New 
York: College Board, 2007.

Kilpatrick, Jeremy, Jane Swafford, and Bradford Findell, eds. 
Adding It Up: Helping Children Learn Mathematics. 
Washington, D.C.: National Academy Press, 2001.

National Council of Teachers of Mathematics (NCTM). 
Principles and Standards for School Mathematics. Reston, 
Va.: NCTM, 2000.

Programme for International Student Assessment (PISA). 
PISA 2006: Science Competencies for Tomorrow’s World. 
Paris: Organisation for Economic Co-operation and 
Development, 2007. http://www.pisa.oecd.org/
dataoecd/30/17/39703267.pdf.

Tapping America’s Potential. Gaining Momentum, Losing 
Ground. 2008. http://www.tap2015.org/news/
tap_2008_progress.pdf.

that their students’ reasoning and sense making are pro-
gressing. Formative assessments rely on a variety of tools, 
including teacher observations, classroom discussions, stu-
dent journals, student presentations, homework, and in-
class tasks, as well as tests and quizzes that ask students to 
explain their thinking.

All stakeholders must work together 
to ensure that reasoning and sense 
making are the focus of high school 
mathematics programs.

Focus in High School Mathematics: Reasoning and Sense 
Making presents an ambitious vision for the improvement 
of high school mathematics. Its refocusing of the high 
school curriculum on reasoning and sense making is not 
a minor tweaking but a substantial rethinking of the high 
school mathematics curriculum and requires the engage-
ment of all involved in high school mathematics. 

Signifi cant effort will be needed to realign the curric-
ulum. To develop new understanding, teachers will need 
long-term professional development and support, includ-
ing opportunities for refl ection on their practice and 
guidance in improving it. Students must be offered the 
resources needed to prepare them for our rapidly chang-
ing world and must recognize that studying mathematics 
in high school is important to their future careers. Fami-
lies should understand which mathematics classes are im-
portant for their students to take and should help them 
develop good study and homework habits. Teachers must 
believe in—and communicate their conviction about—the 
importance of reasoning and sense making for every stu-
dent in every mathematics topic. 

Together, school districts, schools, departments, and 
teachers must ensure that high school students are ex-
posed to a high-quality mathematics curriculum that pro-
motes reasoning and sense making. State and local assess-
ments policies should emphasize the need for and impor-
tance of items that examine students’ abilities to reason 
and make sense of mathematical situations. In addition, 
policymakers must secure adequate resources to assist 
schools and districts in efforts to implement an effective 
curriculum based on reasoning and sense making. 

This publication provides a framework for consider-
ing necessary changes to the high school mathematics cur-
riculum and how those changes might be made. However, 
many issues beyond those addressed in this publication 
remain to be answered. Future publications, including an 
initial set of topic books that set forth additional guidance 
in particular content areas, will offer resources that build 
on this framework. Although NCTM is taking a leadership 
role, all stakeholders must join forces and work together 

(August 14, 2009)
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Learn how five characteristics of tasks and learning 
environments led these sixth graders to successful 

problem solving using direct and indirect reasoning 
to justify their solutions, make their justifications 
public, and respond to mathematical arguments. 

Many educators share the vision of the 
Equity Principle—teachers holding 
high expectations for all students 

(NCTM 2000). However, according to National 
Assessment of Educational Progress (NAEP) 
reports, minority students continue to lag 
behind white students in mathematics achieve-
ment (Strutchens and Silver 2000). For example, 
on the 2000 NAEP mathematics assessment, 
34 percent of white fourth graders scored at 
or above “proficient” compared to 5 percent 
of black students and 10 percent of Hispanic 
students (Braswell et al. 2001). Furthermore, 
the discrepancies are more pronounced on the 
extended, constructed-response items, which 
measure students’ problem-solving and critical-
thinking abilities (Kloosterman and Lester 
2004). Several factors contribute to the failure 
of minority students to build meaningful math-
ematics learning in schools:

1. Low expectations for students’ success in 
building conceptual mathematical knowledge 

2.   Classroom environments in which students 
are insufficiently challenged with thoughtful 
and engaging mathematical activities 

On the other hand, recognizing the impor-
tance of equitable practices in classrooms 
suggests optimism for achieving a classroom 
community where all students are engaged in 
meaningful and thoughtful mathematical prob-
lem solving. To accomplish this goal, certain 
classroom norms must be established in 
which teachers and classmates learn to 
listen to the ideas of all students and to 
recognize, respect, and value their contri-
butions (NCTM 2008). 

We implemented such equitable prac-
tices during an informal mathematics learning 

program. Twenty-four African American and 
Latino student participants volunteered to work 
on open-ended mathematical tasks as an extra 
after-school activity. Our strategies significantly 
engaged them in justification and reasoning 
during problem solving. 

We offer two representative episodes to show 
how students’ reasoning was made public in jus-
tifying problem solutions as well as in respond-
ing to and challenging the ideas of others. The 
sixth graders’ reasoning took the form of both 
direct and indirect proof. 

The classroom community
We encouraged students to work together, 
share their ideas and conjectures, and lis-
ten to and question others’ ideas. Seated 
in heterogeneous groups of four, students 
received a series of tasks—dealing with 
fraction ideas—for which they were to 
justify their solutions. For many of the stu-
dents, the opportunity to work collaboratively 
on open-ended tasks was a new experi-
ence. Therefore, we chose tasks 
from our earlier research that had 
promoted collaborative reason-
ing and problem solving in the 
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sharing. Teachers’ questions were designed to 
better understand students’ thinking, to encour-
age students to talk about their ideas and work, 
and sometimes to direct students’ attention to 
an incomplete component of an argument or 
extend their investigation about a mathematical 
idea. Teachers encouraged students to broaden 
their knowledge about an approach to a solu-
tion by listening to one another and considering 
ideas from others (Mueller and Maher 2009). 

The sixth graders represented their solutions 
in various ways, often building models that they 
used to explain their ideas. These models helped 
communicate alternative ways of representing 
solutions to others. Students were encouraged 
to listen to one another when they judged their 
peers’ arguments, interjected their opinions, 
and offered alternate solutions. Teachers did 
not judge or evaluate students’ ideas, solutions, 
and strategies, so students did not fear being 
wrong. They were asked to justify their reason-
ing to their classmates and assess whether their 
solutions were convincing. Hence, students 
took responsibility for posing questions about 
ideas and evaluating the reasonableness of 
arguments.

Over the course of the five sessions, students 
engaged in high-order reasoning that often led 
to justifications in the form of proof. To con-
vince their peers of an argument’s soundness, 
they used multiple representations and forms of 
reasoning (see table 2). The following episodes 
provide examples of students’ reasoning. 

Students received these challenges during the first five 
sessions of their after-school program.

Date Tasks

11-12-03

1.  If I give the yellow rod the number name five, what number 
name would I give the orange rod?

2.  Suppose I give the orange rod the number name four; what 
number name would I give the yellow rod?

3.  If I call the orange rod one, what number name would I 
give the yellow rod?

4.  If I call the white rod two, what number name would I give 
all the other rods?

11-13-03

1.  Suppose I call the dark green rod one; what number name 
would I give the light green rod?

2.  Someone told me that the red rod is half as long as the 
yellow rod; what do you think? 

3.  If I call the blue rod one, find me a rod that would have the 
number name one-half.

11-19-03

1.  Convince us that there is not a rod that is half the length of 
the blue rod.

2.  Is 0.3 another name for the light green rod?
3.  If I call the blue rod one, what number name would I give 

the white rod? What name would I give the red rod?

11-20-03

1.  If I call the blue rod one, what number name would I give 
the red rod? What name would I give the light green rod?

2.  If I call the blue rod one, what number names would I give 
the rest of the rods?

12-03-03

1.  If I call the orange rod one, what number name would I 
give the white rod? What name would I give the red rod?

2.  If I call the orange rod ten (fifty), what number name 
would I give the white rod?

3.  I want to know which is bigger, one-half or one-third, and 
by how much.

T
A

B
L

E
 1

A set of Cuisenaire rods contains ten 
wooden or plastic rods of specific 
colors that increase in length by 
increments of one centimeter.

F
IG

U
R

E
 1

1 2 3 4 5 6 7 8 9 10

past. Table 1 outlines the tasks that we used dur-
ing five ninety-minute sessions. Students were 
given a set of Cuisenaire® rods (see fig. 1) and 
were invited to build models of their solutions. 
The set contains ten colored wooden or plastic 
rods that increase in length by increments of one 
centimeter. 

After a problem was posed to the class, 
students had the choice to work alone or col-
laboratively. During their initial exploration, 
students worked in pairs and groups, while 
the teacher moved from group to group and 
observed students’ activity, listened to their 
ideas and explanations, and encouraged them 
to continue their investigation. As appropri-
ate, students were invited to share ideas with 
group members or prepare solutions for group 
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Episode 1 
The problem was to find a rod with the number 
name one-half when the blue rod has the num-
ber name one. During the second session of the 
after-school math program, Shirelle and Michael 
proposed that the purple and yellow rods could 
serve as half the blue rod. They built a model 
showing the purple and yellow rods aligned with 

Our study identified four forms of students’ reasoning.

Form of Reasoning Definition (for purposes of this study)

Direct
“A direct proof is based on the assumption that the hypothesis contains enough information to allow the 

construction of a series of logically connected steps leading to the conclusion” (Cupillari 2005, p. 12).
Takes the form: p à q

By Contradiction

Reasoning by contradiction, also known as the indirect method, is based on the agreement that whenever 
a statement is true, its contrapositive is also true or that a statement is equivalent to its contrapositive.
For example, p à q is equivalent to (not q) à (not p); so if (not q) à (not p) is true, then p à q is also 
true (Cupillari 2005). 

Using Upper and 
Lower Bounds 

An upper bound of a subset S of some partially ordered set is an element that is greater than or equal 
to every element of S. The term lower bound of a subset S of some set refers to an element that is 
less than or equal to every element of S. An argument is then formed to justify a statement about the 
subset with the defined bounds (for example, that it is empty).

By Cases

For the purpose of this study, critical events were coded as reasoning by cases when students defended 
an argument by defending separate instances. Students defended an implication in the form p à q, 
when p is a compound proposition composed of propositions p1, p2, … pn, and they established each 
of the implications p1 à q  p2 à q, pn à q. 
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the blue rod and used direct reasoning to sup-
port their conjecture (see fig. 2a). 

Dante challenged their claim, arguing that 
the purple and yellow rods are not the same 
length, so they could not be called halves. 

Using a counter argument, Chanel explained, 
“And the yellow takes up more space than the 
purple; to be halves, they should be the same.”

Small groups of students received a set of Cuisenaire rods and were invited to build models of their 
solutions.
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(b) Chris reasoned that the length of one blue rod equals nine 
white rods, which cannot be evenly divided in half. 

(a) Shirelle and Michael erroneously called two rods of different 
sizes one-half the blue rod.

(c) Chris defended his model with an argument by 
contradiction.
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At another table, Chris proposed to his group 
that no rod in the set could be called one-half. 
He reasoned that nine white rods are equivalent 
to the length of the blue rod (see fig. 2b) and 
cannot be partitioned into two sets without a 
remainder. Chris defended his model using an 
argument by contradiction (see fig. 2c):

Um, like y’all was saying, the white little rods 
won’t be able to do it, but since there’s nine 
white little rods, you can’t really divide that 
into a half. So, you can’t really divide by two 
because you get a decimal or remainder. So, 
there is really no half, no half of blue because 
of the white rods. 

Also using a model (see fig. 3), Dante showed 
that the purple rod could not be considered half 
of the blue rod because the combination of two 
purple rods is not equivalent to the length of the 
blue rod (they are too short). Likewise, the yel-
low rod could not be named half of the blue rod 
because the combination of two yellow rods was 
not equivalent in length to the blue rod. Dante’s 
argument uses upper and lower bounds. 

Justina presented an alternative argument 
based on portioning the set of rods into two 
cases, those with halves and those without (sin-
gles), enumerating all the cases (see fig. 4). 

Students used four different forms of reason-
ing to justify their solutions for this problem 
(see table 2). In only one case was the reasoning 
faulty (Michael and Shirelle’s direct argument 

that the yellow and purple rods could both be 
called half the blue rod). As early as the second 
session, students listened to one another’s ideas 
and proposed arguments for the reasonableness 
of their own solutions. 

Episode 2
During session 3, one student, Jeffrey, posed 
the task of naming the red rod when the blue 
rod is named one. At the beginning of session 4, 
students had an opportunity to build on their 
earlier problem solving. Individual groups of 
students initiated the challenge of naming all 
the rods (when the blue rod is named one). 

At one table, Chanel named the remainder 
of the rods using direct reasoning based on the 
incremental increase by one white rod, or one-
ninth. She used the staircase model (see fig. 1) as 
a guide and named the rods, increasing by one-
ninth, hesitating at the orange rod, and then nam-
ing it rod nine-tenths. When she explained her 
dilemma—of naming the orange rod—to Dante, 
he initially named the orange rod ten-ninths 
but corrected himself and said that the orange 
rod would start a “new cycle” and be named 
one-tenth. Dante told the group that he heard 
students at other tables calling the orange rod 
ten-ninths. Michael insisted that the others were 
incorrect. Chanel agreed and claimed that “the 
denominator can’t be smaller than the numera-
tor.” Dante concurred. They discussed a rule, 
which Michael referred to as the laws of math and 
the laws of facts, that states that the denominator 
cannot be smaller than the numerator. 

Reminded by a teacher that the white rod is 
named one-ninth, Dante finally used the  stair-
case model to name the orange rod ten-ninths. 
He explained that the length of ten white rods 
is equivalent to the length of an orange rod and 
that because a white rod is called one-ninth, 
the orange rod will be called ten-ninths. Later 

Dante offered an argument using 
upper and lower bounds.
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Justina presented an argument based on portioning the set of 
rods into two cases: those with halves and those without.
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during the same session, students shared their 
findings with the whole class (see table 3). Five 
students presented arguments using direct rea-
soning. However, they based their arguments on 
different representations. 

A culture of confidence
In a relatively short period of time, a culture of 
sense making, communication, and collabora-
tion evolved over the five sessions. The first epi-
sode occurred during session 2 of the program. 
Students were already working together to build 
representations, questioning each other, and 
defending their solutions. Chanel and Dante 
collaborated in an attempt to convince Michael 
and Shirelle that the purple and yellow rods 
could not be called one-half. They built an argu-
ment using upper and lower bounds. During 
whole-class sharing, both students presented 
sophisticated versions of their argument. 

The second episode began with students 
attending to the misconception that the numer-
ator is always less than the denominator. By 
building a model, they convinced themselves 
and one another that the blue rod could indeed 
be named ten-ninths. Students were confident 
in sharing their justifications and secure with 
having representations that differed from their 
peers’ models. 

A culture of equity
Educators often suggest that minority-race, 
inner-city students “need structure.” Adults 
therefore organize classrooms to focus on hav-
ing students learn procedures and skills. This 
perspective leaves little room for students to 
reason, conjecture, and share ideas. As a result, 
students develop a view of mathematics as rule 
oriented and procedure driven (Powell 2004). 

In contrast, our after-school informal math 
sessions focused on having students build 
personal meaning of mathematical ideas. As 
the above episodes illustrate, students actively 
engaged in solving problems and justifying their 
solutions. They posed arguments and defended 
those arguments. They questioned and cor-
rected one another and ultimately created justi-
fications that took the form of proofs. We docu-
mented four types of reasoning that students 
used to defend their arguments. Students used 
multiple representations to back up their claims 
and convince their classmates. 

Putting dispositions into practice 
Teachers can promote such sense making and 
reasoning by engaging students in similar activi-
ties in their own math classs. Give your students 
responsibility for justifying their problem-solv-
ing solutions. To encourage teachers, we share 
certain characteristics of the tasks and environ-
ment that led to successful problem solving: 

1. Give choices. Seat students in small groups; 
participants then have options: to work 

Students were asked to share their direct arguments for 
naming the orange rod ten-ninths with the whole class.

Student Direct Argument

Lorrin

Before, we thought that because we knew that the 
numerator would be larger than the denominator, 
and we thought that the denominator always had to 
be larger. But we found out that was not true because 
two yellow rods equal five-ninths and five-ninths plus 
five-ninths equal ten-ninths.

Kia-Lynn

The orange [rod] is bigger than the blue one, but when 
you add a one-ninth—a white rod—to the blue top, it 
kind of matches. We found out that you can also call 
the blue rod one and one-ninth and the orange one 
without the one-ninth; without the white rod is also 
called one-ninth, too. If you have one white rod and 
you add it to the blue, it’s one-ninth plus one [or] one 
and one-ninth. So, if the blue rod and one white, if 
you put them together, then this means that it’s ten-
ninths also known as one and one-ninth. 

Dante

Well, all I did was start from the beginning—start from 
the white—all the way to the orange and—like Kia-
Lynn’s group just said—I had found a different way 
to do it. Because all I had used [was] an orange, two 
purples, and a red. Since these two are purple, and 
this is supposed to be purple, but I had purple, and 
I used a red since four and four are eight, so, which 
will make it eight-ninths right here. And then plus 
two to make it ten-ninths. That’s what I made.

Chanel

For all of these, I gave the white rod one-ninth, the red 
rod two-ninths, the light green rod three-ninths, 
four-ninths for the pink—uh, purple—rod, five-ninths 
for the yellow rod, six-ninths for the dark green rod, 
seven-ninths for the black rod, eight-ninths for the 
brown rod, nine-ninths for the blue rod, and for 
orange I gave it one-ninth.

Chris

I was saying one and one-ninth because if you add one 
blue one and since the number name for the blue is 
one, then if you add a white one, that equals one-
ninth. If you add one and one-ninth, then that would 
equal one and one-ninth.
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individually, with a partner, with a subset of 
the group, or with the entire group. Thus, stu-
dents may engage in the way in which they 
learn best. 

2. Differentiate. Appropriate teacher moves 
can facilitate how students share ideas. For 
example, to promote interest in the ideas of 
others, ask a student if he or she is aware of 
another student’s solution. Point out differ-
ent and contradictory claims and leave it to 
the students to work out the reasonableness 
of the arguments; this encourages them 
to share ideas and listen to one another. 
Allowing adequate time to explore, share, 
and revisit problems will respect the pace of 
slower-working students who may have dif-
ferent learning styles. Having extension tasks 
available is essential to challenging those 
who work more quickly. 

3. Make ideas public. After students explore 
in their small groups, invite them to use an 
overhead projector to write ideas and share 
solutions. Have them make a variety of rep-
resentations public and discuss them. Orga-
nize the order of the presentations by asking 
several students to share their solutions and 
strategies so that it becomes apparent that 
alternate paths and ways of representing 
mathematical ideas exist rather than only 
one “correct” way. Emphasize the importance 
of offering arguments that are convincing 
to classmates, not just to the teacher. When 
conflicts arise, ensure that ideas are public; 
a resolution can be postponed until convinc-
ing evidence is offered. Communicating their 
ideas will engage learners. Taking responsibil-
ity for explaining ideas can lead to increased 
student confidence and autonomy.

4. Select the best tasks and tools. Choose open-
ended tasks that allow for multiple entry 
points at multiple levels. All students can 
work from their personal representation and 
form their own ideas from this starting point; 
thus, all students can realize success from 
the onset. Opt for tasks that are novel to the 
students so they do not have a strategy read-
ily available. Then they must rely on their 
own (and their partners’) resources to plan a 
strategy and build new knowledge. 

Revisit tasks or pose similar tasks so that 
students have time to reflect on their previ-
ous solutions and those of their classmates 

and incorporate these strategies into their 
solution, thus promoting more refined 
justifications. 

Have manipulative materials available 
and encourage students to build models to 
show their conjectures. Urge them to record 
their strategies with pictures, numbers, and 
words. 

5. Hold high expectations. Students’ math-
ematical development is crucially linked to 
our aspirations for them. We need strategies 
for putting our high expectations into prac-
tice. Helping students to develop a culture of 
reasoning supports them in meeting rigorous 
standards and working up to their math-
ematical potential. 
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“But where is the exponent?” Jorge, a tenth-grade 
English language learner (ELL), asked me while I 
(co-author Roberts) was talking about the formula 

for the area of a parallelogram. After much confusion on 
my part, Jorge said, “Last year you said that the base was 
the number in a power that was not the exponent. I don’t 
see the exponent, so I don’t know where the base is.” Aha! 
I had said something like that in algebra class the previous 
year. However, I had never thought about the two different 
uses of the word base within mathematics. 

Although I knew some of the challenges faced by ELL 
students learning mathematics vocabulary, I had never con-
sidered that mathematics, known for its precision, would 
include ambiguity within its vocabulary. In fact, the sixth 
Standard for Mathematical Practice within the Common 
Core State Standards for Mathematics (CCSSM) relates to 
attending to precision: “Mathematically proficient students” 
need to “communicate precisely to others” and “try to use 
clear definitions in discussion with others and in their own 
reasoning” (CCSSI 2010, p. 7). 

I thought about Jorge. He had been confident enough and 
had the language skills to ask for clarification; many ELL 
students might not. If I had not recognized the connection to 
my earlier use of mathematics vocabulary, where would this 

A classroom teacher discusses ambiguities in 
mathematics vocabulary and strategies for 

ELL students in building understanding.

Nancy s. roberts and Mary P. truxaw
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1. Definitions are filled with technical vocabulary, 
symbols, and diagrams (Pimm 1987). Teachers 
need to explicitly help students make sense of 
this new language (Schlepegrell 2007). 

2. Many mathematics concepts can be represented 
in multiple ways. At least thirteen different 
terms can mean subtraction (Echevarria, Vogt, 
and Short 2010; Heinze 2005). Multiplication 
can be indicated in many ways: “2 times 3,” “2 
multiplied by 3,” and “the product of 2 and 3.” 
To add to the confusion, some words may have 
similar connotations but vastly different techni-
cal meanings—for example, “3 multiplied by 10” 
and “3 increased by 10” (Heinze 2005).

3. Many mathematics words have multiple mean-
ings. A quarter may refer to a coin or a fourth 
of a whole. Students must learn that the same 
word in different situations has different 
meanings, such as asking for a quarter while 
at a vending machine or while eating a pizza 
(Moschkovich 2002).

4. The overlap between mathematics vocabu-
lary and everyday English (Kotsopoulos 2007; 
Moschkovich 2002) is problematic (see table 1).  
The word product, for instance, has meaning in 
everyday English that is completely different 
from its very specific mathematical meaning. 

5. Homonyms and words that sound similar can 
confuse (Adams 2003). See table 2 for a partial 
list. 

6. Similarity to native language words can add  
more confusion. Although these similarities may 
sometimes be helpful—as when cognates have 
similar sounds and similar meanings—similari-
ties can also contribute to confusion. For exam-
ple, the Spanish word for quarter is cuarto, which 
can mean “a quarter of an hour”; quarter could 
also mean a room in a house, as in the English 
usage “your living quarters” (Moschkovich 1999, 
2002). 

Clearly, vocabulary is an important issue in math-
ematics classrooms, especially for ELL students. 

TEACHING METHODS AND STRATEGIES
A selection of strategies for supporting students’ 
development of mathematics vocabulary and 
examples of how to use them follow. Suggestions 
illustrate vocabulary support within an algebra unit 
but could be adapted for other topics. Two tools 
that will be highlighted are word walls—organized 
collections of words displayed in the classroom 
to support vocabulary development—and graphic 
organizers—visual charts and representations 
designed to organize student learning. We will also 
look at ways in which these tools can encompass 
vocabulary strategies. 

confusion have led? How would I have uncovered 
it? How would Jorge’s confusion have impeded 
mastering important mathematical practices or com-
municating precisely? These questions and others 
led to my investigation into the role of vocabulary 
development in helping ELL students be successful 
in mathematics, specifically in first-year algebra. 

As I considered the importance of supporting ELL 
students’ mathematics vocabulary, I asked myself a 
question that would likely arise for many mathemat-
ics teachers: “Do I have time to spend on vocabulary 
development?” Jorge helped me recognize that I had 
to ask myself a different question: “Can I afford not 
to spend time on vocabulary development?” Many 
vocabulary strategies that have worked for my stu-
dents do not add much additional time and enhance 
not only vocabulary but also the mathematics.

CHALLENGES OF MATHEMATICS 
VOCABULARY FOR ELLS 
Although mathematics language is much more than 
just learning vocabulary (Moschkovich 1999, 2002; 
NCTM 2000), vocabulary development is still cen-
tral to learning to read, write, speak, listen to, and 
make sense of mathematics (CCSSI 2010; Heinze 
2005). I will focus specifically on helping ELL stu-
dents build better understanding of algebra through 
vocabulary, sharing outcomes of my own learning 
about mathematics vocabulary and strategies that 
worked for my students and me. 

Mathematics vocabulary may be more difficult 
to learn than other academic vocabulary for several 
reasons. 

Table 1  Math Usage vs. Everyday Usage

Vocabulary Word Mathematics Usage Everyday Usage

volume Amount of space Noise level

product Result in multiplying
Item produced in 
manufacturing

plot To graph a point
A piece of land to 

build a house

cubed
Raised to the  
third power

A type of steak or a 
way to cut vegetables

range
Numerical difference 
between two values

Stove top

prime Prime number Prime rib, prime time

Source: Adams (2003), p. 789

Table 2  Homonyms and Similar Sounding Words

whole – hole 
two – to – too
tenths – tents

eight – ate
symbol – cymbal

half – have

sum – some 
sides – size 
real – reel

Source: Adams (2003), p. 790–91
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Develop a Vocabulary List
Begin by developing a vocabulary list for the unit. 
Table 3 shows samples of mathematics vocabulary 
from the Common Core State Standards for algebra 
(CCSSI 2010). Along with traditional algebra terms, 
include vocabulary to support challenges for ELLs, 
as described earlier (e.g., symbol and whole). Scaffold-
ing such as word walls and graphic organizers will 
increase vocabulary usage while reducing cognitive 
load and stress (Echevarria, Vogt, and Short 2010). 

Preteach and Assess 
At the start of a unit, it is beneficial to trigger and 
assess prior knowledge, review previously learned 
vocabulary, and preteach new vocabulary. Pre-
teaching vocabulary words requires explicit teach-
ing of definitions, pronunciation, and word parts 
(Paulsen 2007). 

Word Walls 
One strategy for stimulating and assessing prior 
knowledge is a word wall. At the beginning of the 
unit, display all the vocabulary for the unit to act 
as an anticipation guide, a strategy used during 
preteaching to stimulate interest in a topic and give 
students a preview of what is to come. One way to 
use a word wall as a preassessment tool and as the 
trigger on the first day of a unit is to include a word 
that does not belong. Then ask small groups to pick 
out the word and describe why it does not belong. 
In a graphing unit, for example, the word wall 
could include the term scientific notation along with 
graphing words such as slope, y-intercept, ordered 
pair, xy-intercepts, and so on. (The nonconforming 
word would later be removed from the word wall.)

Another way to use word walls for preassess-
ment is to have students organize the words into 
groups and give reasons for their choices. Words 
relating to a unit on exponents might be base, 
exponent, denominator, numerator, polynomial, 
monomial, binomial, trinomial, power, reciprocal, 
coefficient, and factor. One student might group 
denominator, numerator, and reciprocal as words 
related to fractions; another student might group 
base, exponent, and power as words describing a 

power. Listening to discussions provides interactive 
forms of preassessment. Moreover, student explana-
tions provide opportunities to foster CCSS mathe-
matical practices—for example, communicating pre-
cisely to others and constructing viable arguments.

Graphic Organizers
Graphic organizers can be useful for activating 
and assessing students’ prior knowledge, organiz-
ing different ways to express basic mathematical 
concepts, and organizing vocabulary for long-term 
retention. One organizer includes eight-sided stars 
with words for arithmetic operations and equality 
(see fig. 1). Working with partners, students list 

Fig. 1  the points of the stars provide space for students to write phrases that mean 

the same thing.

Table 3  Sample Algebra Vocabulary

absolute value binomial coefficient
complete 

the square
conjunction derive

domain equivalent exponential function intersection interval

inverse linear monomial parabola parent function piecewise

polynomial qualitative quadratic radicand range rational

real number regression solution square root trinomial variable

Source: CCSSI (2010), pp. 52–71
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words that could be used for each operation. Then 
they add to their lists by comparing these in small 
groups. Finally, the class as a whole reviews the 
words. This class review is a time to make connec-
tions to the mathematical concepts, to address mis-
conceptions, and to include words and phrases that 
are often confusing—for instance, “4 less than x” to 
mean “x minus 4.” 

Teach and Reteach
Researchers have provided many suggestions for 
explicitly teaching and reteaching vocabulary (see, 

e.g., Adams 2003; Gee 1996; Moschkovich 2002; 
Paulsen 2007). The focus here will be on word 
walls and graphic organizers. 

Word Walls 
Word walls are also useful within instructional 
units. A key idea is that word walls should be inter-
active, not static. After explicitly teaching words in 
the context of the unit, add definitions, examples, 
and diagrams to the words on the wall. Using 
nonexamples can help refine or clarify definitions 
(Adams 2003). In addition, real-life situations can 
provide context for algebra vocabulary and con-
cepts (Paulsen 2007). 

A helpful strategy is to start with informal 
definitions (while preteaching and assessing prior 
knowledge) and then transition to formal defini-
tions (NCTM 2000). For example, the informal 
definition “a variable is a letter” may lead to “a 
variable is a symbol that represents a number” and 
finally to “a variable is a symbol, usually a letter, 
that is a quantity that can have different values.” 
Informal definitions help students construct their 
own meaning, but formal definitions help them 
understand and apply concepts presented in math-
ematics textbooks (Adams 2003). 

Ongoing interactive use of the word wall helps 
students see its value. As the year progresses, stu-
dents use the word wall when answering verbal 
questions, when writing responses to essential 
questions on tests, and at other times when vocabu-
lary usage is emphasized. 

Graphic Organizers  
Graphic organizers are beneficial within a unit of 
study to build and reinforce mathematics language. 
A graphic organizer entitled The Language of Alge-
bra provides an opportunity to teach or reteach the 
parts of an algebraic expression by giving defini-
tions and examples in the context of expressions 
(see fig. 2). In this specific organizer, the “parts” 
section (middle column) could list variable, con-
stant, and operation, with notes and examples for 
each in the left and right columns. Similar language 
organizers could be developed for other topics. 

A Frayer model is a specific graphic organizer 
that is useful when vocabulary terms are confusing 
or closely related (Barton and Heidema 2002). The 
model contains four sections: definition, facts, exam-
ples, and nonexamples (see fig. 3 for an example 
related to the term variable). Both research (Adams 
2003; Paulsen 2007) and personal experience dem-
onstrate that nonexamples can be particularly pow-
erful in helping refine and clarify definitions. When 
students ask, “How about this?” or “How about 
that?” they can refer to the example and nonexample 
sections. New misunderstandings that are uncovered 

Fig. 2  Variable, constant, and operation would be appropriate entries in the ovals in 

the middle column.

Fig. 3  a Frayer model is useful for some vocabulary.
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can be added to the “nonexample” section. Some-
times substituting sections to suit the situation can 
be useful—for instance, using essential characteris-
tics and nonessential characteristics or symbolic rep-
resentation and graphical representation as sections. 
Students frequently refer to their organizers during 
lessons or when reviewing for tests. 

Provide Repetition and 
Support Long-Term Retention 
All students benefit from repeated exposure to 
vocabulary; however, ELLs require more repetition 
to integrate vocabulary into their mathematical 
understanding. In addition, students may need 
assistance in organizing their vocabulary knowl-
edge into long-term memory (Adams 2003). Using 
vocabulary words within context while referring to 
the definitions (Echevarria, Vogt, and Short 2010) 
can be helpful. Providing different examples or 
diagrams each time the word is used helps avoid 
confusion and brings depth to students’ growing 
understanding. 

Word Walls 
Reinforcing vocabulary from the interactive word 
wall can support long-term retention. A simple 
idea is to take four to five minutes at the end of 
class to play password or charades, using words 
from current or previous word walls. Another idea 
is to encourage and facilitate instructional conver-
sations (Cazden 2001) that can support long-term 
retention of mathematics language and build mean-
ing about mathematical concepts (NCTM 2000). 
Word walls can scaffold these conversations. 
When small groups discuss a mathematics prob-
lem, points can be awarded for appropriate use 
of words from the word wall—for example, using 
words such as formula, variables, equations, graphs,
and order of operations when discussing using alge-
bra in the real world. 

Graphic Organizers
The graphic organizers used throughout a unit can 
and should be revisited to support long-term reten-
tion. In addition, new graphic organizers can be 
introduced to review previously learned vocabulary 
and concepts. For example, an organizer with a for-
mal definition, specific properties or special cases, 
and some examples could be used to review the 
concept of factors (see fig. 4).

TEACHER AWARENESS
Along with reading research literature, mathemat-
ics teachers should build their own understand-
ing of the challenges that their ELL students face. 
Awareness of the confusion caused by symbols and 
diagrams, concepts that can be represented with 

multiple terms, words that have multiple meanings, 
and the overlap between mathematics vocabulary 
and everyday usage can help teachers provide 
appropriate emphasis or explicit teaching.

HELPFUL HINTS
Word Walls 
A simple way to make a word wall is to use a hang-
ing pocket schedule organizer (typically used by ele-
mentary school teachers). After deciding on the unit 
vocabulary list (see table 3), type the words into a 
document (in landscape mode), with one word on 
each line. Center each word and enlarge it so that 
it fills a line of the paper. On the next line, type the 
word, its definition, a diagram, and an example. 
After printing, fold the paper so that the word is on 
one side and the expanded definition is on the other 
(see fig. 5). Slide the pieces into the organizer with 
the words showing. As the unit progresses and the 
words are discussed in context, reverse the paper so 
that the expanded definition is revealed. 

Fig. 5  this word wall entry can be folded so that only the vocabulary word is showing.

Fig. 4  this graphic organizer would be useful during review of the concept of factors.
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Graphic Organizers 
Many Internet sites—for example, CAST (www 
.cast.org) and Thinkport (www.thinkport.org)—
have sample graphic organizers that can be used as is 
or customized. Teachers need not limit themselves to 
mathematics organizers; many excellent vocabulary 
organizers, such as Frayer models, come from other 
content areas. Providing a graphic organizer can help 
connect content within the unit and then can be 
used later as a review. Colored paper can assist with 
organization. In my class, colored paper means “keep 
it forever.” Color makes important graphic organiz-
ers easy to find (I can say, “Pull out the red graphic 
organizer on variables”). At the end of the year, unit 
organizers make a good, concise way to review. 

REFLECTIONS AND RECOMMENDATIONS
As I reflect on my experiences and those of my 
students, I am reminded of Jorge’s confusion about 
mathematics vocabulary. His question has led me to 
increase my own awareness of the challenges related 
to mathematics vocabulary that ELL students face and 
strategies that I might use to support these students. 

To help ELL students develop essential math-
ematical practices (CCSSI 2010), I recommend the 
use of word walls and graphic organizers to support 
vocabulary development. Specifically, I recommend 
the following: 

•	 Select	vocabulary	words	for	a	unit	and	post	these	
on the day that the unit is introduced.

•	 Assess	students’	current	understanding.
•	 Refer	to	the	words	throughout	the	unit,	adding	

to the definitions and giving context.
•	 Provide	frequent	opportunities	for	students’	mis-

understanding to come to light.
•	 Use	graphic	organizers	to	help	clarify	the	mean-

ing of words and support long-term retention of 
vocabulary.

In addition to using word walls and graphic 
organizers, teachers should continue to investigate 
ideas available through books, journal articles, and 
websites (there are lots of good ideas out there). 
And, of course, listen to your students—that’s the 
first step in supporting them.
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